

PHYSICS, PAPER-II

		OWED: THREE HOURSPART-I (MCQS)MAXIMUM MARKQS): MAXIMUM 30 MINUTESPART-IIMAXIMUM MARK	
NOTE	E: (i) (ii) (iii)	Part-II is to be attempted on the separate Answer Book. Attempt ONLY FOUR questions from PART-II . ALL questions carry EQUAL marks All the parts (if any) of each Question must be attempted at one place instead of at d	
	(iv) (v)	places. Write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper. No Page/Space be left blank between the answers. All the blank pages of Answer Boo be crossed.	ok must
	(vi) (vii)	Extra attempt of any question or any part of the question will not be considered. Use of Calculator is allowed.	
		<u>PART – II</u>	
Q. 2.	(a)	in an electric field.	(10)
	(b)	Show that the energy density of a parallel plate capacitor with dielectric (medium between them is directly proportional to the square of electric field intensity.	(6)
	(c)	In a microwave oven torque acting on an electric dipole is responsible for the (production of heat. Comment.	(4) (2
Q. 3.	(a)	Discuss origin of magnetism by considering processes that creates magnetic field (in an atom.	(8)
	(b)		(8)
	(c)	How does effect of nuclear magnetism becomes important in nuclear (magnetic resonance?	(4) (2
Q. 4.	(a)	Derive an expression for the time-independent Schrodinger wave equation (in one dimension for a single particle. Define Hamiltonian operator.	
	(b)	Discuss various quantum numbers to describe the complete behavior of an (electron in an orbital.	
	(c)	How slowly must an electron be moving for its deBroglie wave-length equal to (1mm?)	(4) (20
Q. 5.	(a)	Discuss the behavior of particle trapped in infinitely deep well and show that the (energy of particle inside the well is quantized.	(10)
	(b)	condition associated with quantum mechanics.	(6)
	(c)	-	(4) (2 (
) . 6.	(a) (b)	criteria for oscillations.	(10) (6)
	(c)	feedback.	(4) (2 (
Q. 7.	(a)	Discuss principle, construction and working of Nuclear Reactor. Define (Breeder Reactor.	(8)
	(b)	What is nuclear fusion? Describe Proton-Proton cycles for energy release in the (Sun and Stars.	(8)
	(c)	What is Q-Value of a nuclear reaction?	(4) (20
Q. 8.	Wr (a) (c)	ite comprehensive notes on any TWO of the following (10 each) The Biot and Savart law (b) Cyclotron Electromagnetic waves	(20