FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2023 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

Roll Number

CHEMISTRY, PAPER-II

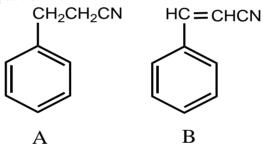
TIME ALLOWED: THREE HOURS PART-I (MCQS) MAXIMUM MARKS = 20 PART-I (MCQS): MAXIMUM 30 MINUTES PART-II MAXIMUM MARKS = 80

NOTE: (i) Part-II is to be attempted on the separate Answer Book.

- (ii) Attempt ONLY FOUR questions from PART-II. ALL questions carry EQUAL marks.
- (iii) All the parts (if any) of each Question must be attempted at one place instead of at different places.
- (iv) Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper.
- (v) No Page/Space be left blank between the answers. All the blank pages of Answer Book must be crossed.
- (vi) Extra attempt of any question or any part of the attempted question will not be considered.
- (vii) Use of calculator is allowed.

PART-II

- Q. 2. (a) Arrange the following alkenes in order of their relative stability. How will you proceed to determine the order practically?
 - i. 1-hexene
 - ii. cis-3-hexene
 - iii. trans-3-hexene
 - (iv) 2-methyl-2-pentene
 - (v) 2,3-dimethyl-2-butene
 - **(b)** Explain why?


(5)

(5)

(5)

(20)

- (i) Poly substitution is a complicating factor in aromatic alkylation but not in aromatic nitration or halogenation.
- (ii) A undergoes nitration predominantly at the ortho/ para positions but B mainly at meta position

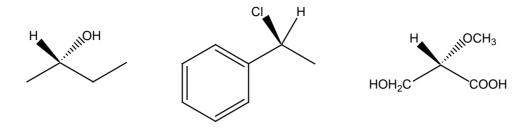
(c) Compare the basicity of:

(i) $(CH_3)_3N$ & $(CCl_3)_3N$

(ii) $C_6H_5CH_2NH_2$ & $CH_3C_6H_4NH_2$

(iii) Aniline & Cyclohexyl amine H_2N

(iv) \sim CN & NC \sim NH₂


(v) NHCH₂CH₃ & NHCOCH₃

- (d) Explain why?(i) Tertiary carbocation is more stable than primary.
 - (ii) Ethanol has higher boiling point than diethyl ether.
- Q. 3. (a) Write the structural formula for more stable conformation of each of the following (8) compounds.
 - a) trans-1-Fluoro-3-methylcyclohexane,
 - b) cis-1-Iodo-4-methylcyclohexane
 - c) cis-1-tert-Butyl-4-methylcyclohexane,
 - d) cis-1,3,5-Trimethylcyclohexane

(2.5 each)

CHEMISTRY, PAPER-II

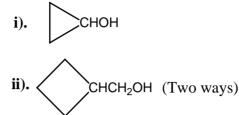
(b) Mention R & S configuration of the following compounds.

(c) Draw and label the E and Z isomers for each of the following compounds.

$$\begin{array}{ccccc} CH_3CH_2C=CHCH_2CH_3 & CH_3CH_2CH_2CH_2 \\ CI & CH_3CH_2C=CCH_2CI \\ HOCH_2CH_2C=CC=CH \\ O=CH C(CH_3)_3 & CH_3CH_2CH=CHCH_3 \end{array}$$

(d) Draw the structure of (Z)-3-isopropyl-2-heptene.

(2) (20)


(5)

(5)

- Q. 4. (a) In benzaldehyde, two of the ring protons have resonance at 7.87 ppm, and the other three (4each) (20) have resonance in the range from 7.5 to 7.6 ppm. Explain.
 - (b) Arrange the following protons in the decreasing order of their δ values in 1H-NMR and account for your order: Methyl, ethylenic, acetylenic, aryl and aldehydic.
 - (c) List the solvents most commonly used in IR spectroscopy. Why water and ethanol are not suitable solvents?
 - (d) The UV spectrum of acetone shows absorption maxima at 166, 189, and 279 nm. What type of transition is responsible for each of these bands?
 - (e) What types of electronic transitions are possible for each of the following compounds?
 - (i) Cyclopentene,
 - (ii) Acetaldehyde,
 - (iii) Dimethyl ether,
 - (iv) Methyl vinyl ether.
- O. 5. (a) Write down the reagents, conditions and mechanisms of the following reactions. (10 each) (20)
 - i). Kolbe reaction.
 - ii). Williamson synthesis
 - iii). Dow Process
 - iv). Reimer-Tiemann reaction
 - v). Bromination of phenol
 - **(b)** Outline all steps involved in the synthesis of the following compounds from benzene or toluene, assuming that the ortho / para mixtures are separable.
 - i). n-Butylbenzene
 - ii). m-Nitrotoluene
 - iii). p- Bromonitrobenzene
 - iv). p- Bromobenzoic acid.
 - v). 1,2-Dibromo-4-nitrobenzene
- Q. 6. (a) Describe with equations all possible methods that can be used for the preparation of n-hexane. (10)
 - **(b)** Why Corey-House Method is more suitable as compared to Wurtz reaction for the synthesis of alkane. Explain with examples. (5)

CHEMISTRY, PAPER-II

- (c) Draw the structures of following compounds and label them with IUPAC systematic rules. (20)
 - 3-cyclopentylhexane
 - ii). 2-cyclobutyl-3-methylpentane
 - iii). Isopropylcyclodecane
 - iv). 2-methylbicyclo [3.2.0] heptanes
 - v). 8-methylbicyclo [3.2.1] octane
- How can you prepare each of the following substances by a reaction involving Grignard (5) O. 7. (a) reagent?

- iii). (CH₃)₃CD
- iv). CH₃CH₂CHOHCH₃ (Two ways)
- v). (CH₃CH₂)₃COH (Three ways)
- How will you bring about the following conversions?
 - **(5)** CH₃CHBrCH₂COOC₂H₅ → HOOCCH₂CH(CH₃)CH₂COOH
 - $CH_3CH(COOC_2H_5)_2$ → HOOCH₂CH(CH₃)CH₂COOH ii
- How would you synthesize each of the following compounds by the Reformatsky **(5)** reaction?

i).
$$H_3C$$
— CH_2 — CH_2 — CH_2 — CH_3 — $CH_$

- How would you synthesize each of the following compounds by the Wittig reaction? (2.5)
- How will you synthesize each of the following substances by an actoacetic ester synthesis? (2.5)(20)
 - i. 3,4-dimethyl-2,5-hexanedione
 - ii. 3-acetyl-5-hexanoic acid.
- Q. 8. Discuss the following topics. (a)

(12)(**6** each)

- **Prostaglandins** 1.
- 2. Terpenes
- Name the epimers of d -glucose. **(b)**

(4)

- Clearly represent the most stable conformation of the -pyranose form of each of the (20)(c) following sugars.
 - (a) D-Galactose
 - (b) D-Mannose
 - (c) L-Mannose
 - (d) L-Ribose

Page 3 of 3