566 Roll No. clrscr(); char str [20]; getch(); cout << "Enter your name: "; cout<<"Hello, "<<str<<"You are appearing in FPSC exam"; ## FEDERAL PUBLIC SERVICE COMMISSION SECTION OFFICERS PROMOTIONAL EXAMINATION - 2016 | ÷ | | COMPUTER | RSCIENCE | | | | | | | | |-------|------------------------------|--|---|-------------------------------|--|--|--|--|--|--| | TIM | E AL | LOWED: THREE HOURS | MAXIMUM MARKS: 100 | | | | | | | | | NOT | (ii)
(iii)
(iv)
(v) | Attempt FIVE questions in all. ALL Question All the parts (if any) of each Question must be a Candidate must write Q. No. in the Answer No Page/Space be left blank between the abe crossed. Extra attempt of any question or any part of the Leave some blank space and draw two horizons. | ttempted at one place instead of at different
Book in accordance with Q. No. in the
answers. All the blank pages of Answe
the attempted question will not be consi | Q. Paper. er Book must dered. | | | | | | | | Q. 1. | | List OSI Seven Layers in order and briefly of What is the difference between IPv4 and IIPv4 was already available and implemented What is the difference between LAN, MAN | IPv6? Why IPv6 was developed when d? | (10)
(6)
(4) (20) | | | | | | | | Q. 2. | (b) | What is an operating system? List any three operating systems? What is a process? How processes are scheduled to the processor? List any three Scheduling algorithms. What is the difference between uni-programming, multi-programming/multi-tasking and parallel processing? | | | | | | | | | | Q. 3. | | (iv) (11100) ₂ Convert the following numbers from decimal (i) 65 (ii) 89 (iv) 99 Define the following terms: (i) URL (ii) Protocol | (iii) (100111) ₂ | (8)
(6)
(6) (20) | | | | | | | | Q. 4. | (a) | (iv) WiFi Write a program in C++ that adds two number following output: Enter first integer X: Enter second integer Y: Sum = X+Y= | ers X and Y . It should display sum with | | | | | | | | | | (b) | Define following terms: (i) Class (ii) Encapsulation (iv) Polymorphism (v) Inheritance (vii) Serialization (viii) Trigger Write the output of following program: #include <iostream.h> void main() {</iostream.h> | (iii) Shadowing
(vi) Copy constructor | (4) (20) | | | | | | | ## **COMPUTER SCIENCE** | Q. 5. | (a) | (a) Consider the following array, write a heap out as binary tree. | | | | | | | | | (8 |) | | | |-------|--|--|------------|-----------|---------|---|---------------------|---------|---------|-----------|-----------|----------|------|------| | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | | | | | 1 | 8 | 27 | 10 | 45 | 83 | 91 | 31 | 12 | 52 | 51 |] | | | | (b) | Add 23 | to the h | eap, ma | king su | re to res | tore the | heap i | nvaria | nt. How | does | the arra | y (8 |) | | | | look now? (c) Two of the most common divide-and-conquer sorting algorithms are quicksort and | | | | | | | | | | | | | | | (c) | | | | | | | | | | d (4 | (20) | | | | | | mergesort. In practice quicksort is often used for sorting data in main storage rather | | | | | | | | | | | | | | | | than mergesort. Give a reason why quicksort is likely to be the preferred sorting | | | | | | | | | | | | | | | | algorithn | n for this | s applica | ation. | | | | | | | | | | | 0 (| () | 33.77 | | | | 1 25 1 | | 2.72 | ~ ~ | | | | | • | | Q. 6. | Q. 6. (a) Why normalization is used in relational databases? Define first and second normal form with an example. (b) What is primary key and why is it used in each relation? (c) What is the difference between an entity and an attributes? (d) Draw an entity relationship diagram between EMPLOYEES, and DEPARTMENTS | | | | | | | | d norma | al (1 | U) | | | | | | | | | | | | | | | (2 | ` | | | | | | | | | | | | | | (3 | | | | | | | | | | | | | | | | MENT | |)
(20) | | | | | | (4) | assuming | | | | | | | | | | | | (20) | | | | Write do | | | | | | . oj or | aj one | aopara | 110111 0 | | | | | | | | , | | 1 | , and | | | | | | | | | | Q. 7. | (a) | What is e | -Comm | erce? W | hat are | the adva | ntages & | & disac | lvantag | ges of e- | comm | erce? | (8) | | | | (b) | | | | | | | | | 1.2 | | | (8) | | | | (c) | | | | | followi | ng outpi | ut: | | | | | (4) | (20) | | | | This is a | | | | | | | | | | | | | | | | It is writt | en using | HTML | codes. | | | | | | | | | | | Q. 8. | Defi | Define the following concepts with suitable examples. (5 marks each) | | | | | | | | | | | | (20) | | Q. 0. | (a) | Machine | | oncepts | will Su | intable ex | comples | • | | (3 II | ai ks c | each) | | (20) | | | (b) | | | Y | | | | | | | | | | | | | | Feature e | | | | | | | | | | | | | | | (d) | OCR (Op | | | Recogni | tion) | | | | | | | | | | | . , | | | | 0 | , | | | | | | | | | | | | | | | | de de ste de de de de | ماد ماد ماد ماد ماد | d. | | | | | | |