

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2021 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

PURE MATHEMATICS

TIME ALL	OWED: THREE HOURS	MAXIMUM MARKS = 100
NOTE: (i)	Attempt FIVE questions in all by sel	ecting TWO Questions each from SECTION-A&B and
ONE Question from SECTION-C. ALL questions carry EQUAL marks.		
(ii)	All the parts (if any) of each Question must be attempted at one place instead of at different	
	places.	
(iii)	Write Q. No. in the Answer Book in ac	cordance with Q. No. in the Q.Paper.
(iv)	No Page/Space be left blank betwee	n the answers. All the blank pages of Answer Book must
	be crossed.	
(v)	Extra attempt of any question or any pa	art of the attempted question will not be considered.
(vi)	Use of Calculator is allowed.	

SECTION-A

- **Q.1.** (a) Let Ψ be a homomorphism of group G into group \tilde{G} with kernel K, prove that K is (10) a normal subgroup of G.
 - (b) Prove that if H and K are two subgroups of a group G, then HK is a subgroup of G (10) (20) if and only if HK=KH.

Q.2. (a) Find elements of the cyclic group generated by the permutation. (10)

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 2 & 6 & 1 \end{pmatrix}$$

(b)

Verify that the polynomials $2 \cdot x^2$, $x^3 \cdot x$, $2 \cdot 3x^2$ and $3 \cdot x^3$ form a basis for the set $P_3(x)$; the set of all polynomials of degree three. Also express the vectors $1 + x^2$ and $x + x^3$ as a linear combination of these basis vectors.

- Q. 3. (a) Let V be the real vector space of all function from R to R. Show that $\{\cos^2 x, \sin^2 (10) x, \cos 2x\}$ is linearly dependent while $\{\cos x, \sin x, \cosh x, \sinh x\}$ are linearly independent.
 - (b) Solve the system of linear equations:

$$\begin{array}{l} x_1 - 2x_2 - 7x_3 + 7x_4 = 5 \\ -x_1 + 2x_2 + 8x_3 - 5x_4 = -7 \\ 3x_1 - 4x_2 - 17x_3 + 13x_4 = 14 \\ 2x_1 - 2x_2 + 11x_3 + 8x_4 = 7 \end{array}$$

SECTION-B

Q. 4. (a) If
$$f(\mathbf{x}, \mathbf{y}) = x^2 \tan^{-1}\left(\frac{y}{x}\right) - y^2 \tan^{-1}\left(\frac{x}{y}\right)$$
. (10)
Show that $\frac{\partial^2 f}{\partial y \partial x}(\mathbf{x}, \mathbf{y}) = \left(\frac{x^2 - y^2}{x^2 + y^2}\right)$

(b) Evaluate
$$\int_{0}^{6} f(x) dx$$
 where $f(x) = \begin{cases} x^2 when x < 2 \\ 3x - 2when x > 2 \end{cases}$ (10) (20)

Page 1 of 2

(10) (20)

(10) (20)

PURE MATHEMATICS

Q.5. (a) Let
$$I_n = \int_0^\infty x^n e^{-x} dx$$
 where *n* is an integer. Prove that (10) $I_n = n I_{n-1}$ Hence show that $I_n = n!$

(b) i. Write
$$r = \frac{8}{2 - \cos \theta}$$
 in rectangular coordinates. (10) (20)
ii. Write $x^4 + 2x^2y^2 + y^4 - 6x^2y + 2y^3 = 0$
in polar coordinates.

Q.6. (a) Evaluate
$$\iint_{D} dy dx$$
 and $\iint_{D} dx dy$ where *D* is the region bounded by the y-axis, the (10) lines x=2 and the curve e^{x} .

(b) Investigate the curve
$$y = \frac{x^3 - x}{3x^2 + 1}$$
 for points of inflexion. (10) (20)

SECTION-C

Q.7. (a) Sum the series
$$1 + \frac{1}{2}\cos\theta + \frac{1.3}{2.4}\cos 2\theta + \frac{1.3.5}{2.4.6}\cos 3\theta + \dots$$
 (10)

(b) Prove that
$$\cos\frac{\pi}{7} - \cos\frac{2\pi}{7} + \cos\frac{3\pi}{7} = \frac{1}{2}$$
 (10) (20)

Q.8. (a) Construct the analytic function f whose real part is $U = x^3 - 3xy^2 + 3x + 1$ (10)

(b) Evaluate
$$\int_{C} \frac{dz}{z^2 + 2z + 2}$$
 Where C is a square with corners (10) (20) (0,0),(-2,0),(-2,-2) and (0,-2).
