

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2023 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

Roll Number

PHYSICS, PAPER-I

			PHYSIC	<u>, S, PAPEK-I</u>			
						[MARKS = 20 [MARKS = 80	
NOTE:	(i)	Part-I	I is to be attempted on the separ	ate Answer Book.			
((ii)	Attem	pt ONLY FOUR questions from	n PART-II . ALL quest	ions carry EQUAL m	narks.	
	(iii)	All the places.	e parts (if any) of each Questio	n must be attempted at	one place instead of	at dif	feren
((iv)	Write	Q. No. in the Answer Book in a	ccordance with Q. No. i	n the Q.Paper.		
	(v)	No Pag be cro	ge/Space be left blank between ssed.	the answers. All the bl	ank pages of Answer	Book	mus
	(vi) vii)		attempt of any question or any p f Calculator is allowed.	part of the question will	not be considered.		
			<u>PA</u>	<u>RT – II</u>			
Q. 2.	(a)		t is Gradient of a scalar functio $\overline{Grad}\varphi = \overrightarrow{\nabla}.\varphi$	n? Give its physical sig	gnificance and show	(10)	
	(b)) Define the term 'acceleration' and find its Cartesian components.				(06)	
	(c)) If $\vec{A} = xz^3\hat{\imath} - 2x^2z\hat{\jmath} + 2yz^4\hat{k}$, then find curl of A at the point (1,-1,1)				(04)	(20
Q. 3.	(a)	-	in the rotational kinetic energy phere.	and determine its form	nula for a disc, hoop	(10)	
	(b)		t do you mean by the term 'ine onal inertia of a solid cylinde petry.	1 0	1 i	(06)	
	(c)	Calcu	late the angular speed of the sevatch.	cond's hand, minutes h	and and hour's hand	(04)	(20
Q. 4.	(a)		t was Physics like before relativy? Mathematically explain how		-	(10)	

- (b) Discuss in detail the relativity of length using Einstein's special theory of (06) relativity.
- (c) Calculate the mass equivalent of energy from an antenna radiating 10KW for 24 (04) (20) hours.
- **Q.5.** (a) Define capillarity and derive an expression for the rise of liquid in a capillary (10) tube to show that the height of the liquid column supported is inversely proportional to the radius of the tube.
 - (b) What are fluids? Write their important characteristics. (06)
 - (c) A cylindrical swimming pool has radius 2m and depth 1.3m. It is filled (04) (20) completely with salt water. Given, density of salt water = 1.03×10^3 kgm⁻³, volume of water = 16.34m³, and the atmospheric pressure = 1.013×10^5 Pa. Calculate the pressure at the bottom of the pool.

PHYSICS, PAPER-I

- **Q. 6.** (a) For a wave travelling through a medium, demonstrate that the total energy per (10) unit volume is always equal to one half the kinetic and one half the potential energy.
 - (b) The longitudinal waves can pass through solids. How it is possible and on what (06) parameters the velocity of such waves will depend?
 - (c) The angular Vibrational frequency of *CO* molecule is $0.6 \times 10^{15} \text{s}^{-1}$. Calculate the (04) (20) amount of work required for stretching it by 0.5Å from the equilibrium position.
- Q. 7. (a) An ideal gas is enclosed in a cylinder with movable piston. Calculate the work (10) done on such gas and show that pressure force is non-conservative. (06)
 - (b) State and briefly explain the intermolecular forces.
 - (c) Oxygen gas having a volume of 1130cm³ at 42°C and a pressure of 101kPa (04) (20) expanded until its volume is 1530cm³ and its pressure is 106kPa. Find the number of moles of oxygen in the system and its final temperature.
- **Q. 8.** Write short notes on any TWO of the following. (10 each) (20)
 - **a.** Kepler's Law of Periods
 - **b.** Michelson interferometer
 - **c.** Young's double slit experiment

Page 2 of 2